

22 January 2026

Ms Anna Collyer
Chair
Australian Energy Market Commission
GPO Box 2603
SYDNEY NSW 2001

Dear Ms Collyer,

Compliance Template Review 2026 - Consultation on issues paper

Queensland Electricity Transmission Corporation Limited (Powerlink) welcomes the opportunity to comment on the Australian Energy Market Commission's (AEMC's) Reliability Panel *Compliance Template Review Issues* paper, published on 11 December 2025. We understand the Panel has been asked to update the Template for Compliance Programs to reflect the *Improving the NEM access standards – Package 1* changes, including the extension to other plant types such as Transmission Network Service Provider (TNSP) owned synchronous condensers.

Given System Strength Service Provider (SSSP), such as Powerlink, synchronous condensers provide essential system security services, the types of tests, extent of testing and frequency of tests may affect both system strength service provision and TNSP OPEX costs. While Powerlink is generally supportive of the principles outlined in the Issues Paper, we recommend the Panel consider the following matters.

Extent of testing

Powerlink supports the use of online testing for synchronous condensers, such as connection-point voltage step tests or changing reactive power, as this approach maintains high availability for these critical system security services. Conversely, Powerlink recommends minimising the requirement for offline testing, as this would remove the synchronous condenser out of service and may adversely impact the provision of system strength.

Powerlink supports ongoing performance monitoring using meter data (e.g. from Phasor Measurement Units) following major network disturbances. Monitoring should focus on events significant enough to meaningfully assess synchronous condenser performance, as low severity voltage dips may not elicit a measurable response, particularly where the synchronous condenser is electrically distant from the disturbance.

Powerlink also supports the Reliability Panel's proposal to structure the testing template by plant type but recommends further separating Schedule 5.2 plant categories. Synchronous condensers have fewer subsystems than synchronous generators (for example, no prime mover or fuel systems) and do not produce active power. Given these material differences, Powerlink suggests separating synchronous condenser tests from generator tests to improve clarity in the template.

For clarity, Powerlink considers the following online tests relevant for synchronous condenser compliance verification (i.e. a subset of generator testing):

- Reactive power capability (S5.2.5.1): adjust reactive power to the levels defined in the test plan.

- Voltage and reactive power control (S5.2.5.13):
 - Assess limiter operation.
 - Perform voltage step-response tests at the connection point.
 - Conduct external disturbance tests (e.g. switching reactive devices on the network)
- Performance monitoring: observe synchronous condenser responses to network events such as major faults, voltage changes and frequency disturbances.

Powerlink also considers that flexibility in the types of tests is required to account for differences in synchronous condenser manufacturer systems and TNSP implementations, including varying access to control system parameters needed to conduct the test.

Testing Frequency

Online tests are likely to require the specialised support of the synchronous condenser manufacturer, including having their personnel onsite. As a result, the test timing is often dependent on manufacturer availability, which can complicate scheduling and increase TNSP operational costs.

Powerlink considers there are benefits if compliance testing is aligned with scheduled synchronous condenser maintenance. For example, where major manufacturer maintenance occurs every six years, additional time could be allocated to undertake compliance testing once the unit is resynchronised. This approach is cost effective, as manufacturer personnel are already onsite, and avoids the need for separate testing programs. It may also create opportunities to complete some offline tests (such as circuit breaker operating time and protection relays tests – S5.2.5.8, S5.2.5.9) where the unit is already out of service for maintenance.

Accordingly, Powerlink recommends that the template allow flexibility in testing frequency so each TNSP can align compliance testing with their own maintenance programs or other appropriate processes. This flexibility is particularly important for TNSPs with large synchronous condenser fleets, enabling efficiencies across portfolios. For instance, where multiple units from the same manufacturer are located at a single substation, sequential testing while manufacturer personnel are onsite could significantly reduce costs.

Consultation timeframe

Powerlink welcomes the proposed technical workshop in February 2026. For the consultation on the draft report and template in April, Powerlink recommends extending the review period to account for multiple public holidays in April, including Easter and ANZAC Day, which will reduce the effective review time available for stakeholders to assess the material.

If you have any questions in relation to this submission, please contact Samantha Rennie (A/ General Manager, Network Regulation) at samantha.rennie@powerlink.com.au.

Yours sincerely,

Daniel Andersen
General Manager Energy Markets and Planning